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Abstract

In this paper, we prove a result concerning a conjecture of Ma from diophantine equations,
which is connected to an open problem on abelian difference sets of multiplier −1.

1 Introduction

A (v, k, λ) difference set D in a group G is called reversible if {d−1 : d ∈ D} = D. If D is an abelian

difference set with multiplier −1, then there exists a translate of D that is reversible. Moreover,

there are two classes of reversible abelian difference sets, namely, those that satisfy v 6= 4(k − λ)

and those for which v = 4(k − λ). There is only one example in the first class, due to McFarland

[11]. More details can be found in [5]. McFarland [11] proposed the following conjecture.

Conjecture 1.1 (McFarland Conjecture). If D is a reversible abelian (v, k, λ) difference set, then

either v = 4000, k = 775, λ = 150, or v = 4(k − λ).

Investigating sub-difference sets of reversible difference sets, in [10], S.L. Ma proposed the

following conjectures, which imply the previous conjecture of McFarland:

Conjecture 1.2. Let p be an odd prime, a ≥ 0 and b, m, r ≥ 1. Then,

(1) Y = 22a+2p2m − 22a+2pm+r + 1 is a square if and only if m = r (i.e., Y = 1);

(2) Z = 22b+2p2m − 2b+2pm+r + 1 is a square if and only if p = 5, b = 3, m = 1, r = 2 (i.e.,

Z = 2401).

Part (1) of Conjecture 1.2 was confirmed by Le and Xiang in [6]. Nothing is known about part

(2) of the above conjecture. While we cannot prove the above conjecture, we are able to show the

following result.
12000 Mathematics Subject Classification: 05B10, 11D45, 11D72.
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Theorem 1.3. Assume that p > 2 is a fixed odd prime. Then the diophantine equation

x2 = 22b+2p2m − 2b+2pm+r + 1 (1)

in positive integer unknowns x, b, m, r ≥ 1 has at most 250,000 solutions.

On a related note, we mention that in [1], Calderbank relates a certain class of [n, k] codes over

GF (q), where q 6= 2 is a prime power, to the diophantine equation

x2 = 4qn + 4q + 1. (2)

He conjectured that (2), for q 6= 3 a prime power, has only the trivial solutions (±x, n) = (2q+1, 2).

This was proved in the affirmative by Tzanakis and Wolfskill [14, 15]. Of a similar type is the

diophantine equation x2 = 4 z2 ym+n + ε 4 yn + 1, ε = ±1, which was studied by Luca [7], who

proved that every solution of such an equation with x > 1, y > 1 and m, n of the same parity must

satisfy z2 = yn−m and x = 2yn+ε. Moreover, in [8, 9], Luca found all solutions of x2 = 4qm−4qn+1

and of x2 = pa ± pb + 1, respectively.
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Institute of the UNAM in Morelia in June 2004. He thanks this Institute for its hospitality.

Research of F. L. was supported in part by grants SEP-CONACyT 37259-E and 37260-E and that

of P. S. by a grant from the Vice-Chancellor’s Office at his institution.

2 Preparations

We start by recalling a particular instance of a quantitative version of the Schmidt Subspace

Theorem due to J.-H. Evertse [4].

Let MQ be the set of all the places of Q. For x ∈ Q∗ and v ∈ MQ we put |x|v = |x| if v = ∞

and |x|v = p−ordp(x) if v corresponds to the prime number p, where ordp(x) is the order at which p

appears in the factorization of x. When x = 0, we set ordp(x) = ∞ and |x|v = 0. Then the product

formula ∏
v∈MQ

|x|v = 1

holds for all x ∈ Q∗. Let N ≥ 2 be a positive integer and define the heightH(x) of x = (x1, . . . , xN ) ∈

QN as follows. For v ∈ MQ, write

|x|v =
( N∑

i=1

x2
i

)1/2 if v = ∞,

|x|v = max{|x1|v, . . . , |xN |v} otherwise.
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Then,

H(x) =
∏

v∈MQ

|x|v.

For a linear form L(x) =
∑N

i=1 aixi with a = (a1, . . . , aN ) ∈ QN , we write H(L) = H(a).

We now let N ≥ 2 be a positive integer, S be a finite subset of MQ of cardinality s containing

the infinite place, and for every v ∈ S, we let L1,v, . . . , LN,v be N linearly independent linear forms

in N indeterminates with coefficients in Q satisfying

H(Li,v) ≤ H for i = 1, . . . , N and v ∈ S. (3)

Theorem 2.1. (The Subspace Theorem.) Let 0 < δ < 1 and consider the inequality

∏
v∈S

N∏
i=1

|Li,v(x)|v
|x|v

<

(∏
v∈S

|det(L1,v, . . . , LN,v)|v

)
H(x)−N−δ. (4)

Then the following hold:

(i) There exist proper linear subspaces T1, . . . , Tt1 of QN with

t1 ≤
(
260N2

δ−7N
)s

, (5)

such that every solution x ∈ ZZN\{0} of inequality (4) satisfying the inequality H(x) ≥ H

belongs to T1 ∪ · · · ∪ Tt1.

(ii) There exist proper linear subspaces T ′
1, . . . , T

′
t2 of QN with

t2 ≤ (150N4δ−1)Ns+1(2 + log log 2H), (6)

such that every solution x ∈ ZZN\{0} of inequality (4) satisfying the inequality H(x) < H

belongs to T ′
1 ∪ · · · ∪ T ′

t2.

We shall apply Theorem 2.1 to the finite subset S = {2, p,∞} of MQ and certain systems of

linear forms Li,v with i = 1, . . . , N , and v ∈ S. In our case, the points x for which inequality (4)

will hold will be in (ZZ∗)N . In particular, the inequality |x|v ≤ 1 holds for all v ∈ MQ\{∞} as well

as the inequalities

N ≤ H(x) ≤
∏
v∈S

|x|v ≤ Nmax{|xi| : i = 1, . . . , N}. (7)

Finally, our linear forms will have coefficients 0 and ±1 (hence, we may take H = N), and will

satisfy

det(L1,v, . . . , LN,v) = ±1 for all v ∈ S. (8)

Thus, H(x) ≥ N = H holds for all such points x ∈ ZZ∗. The following statement is a straightforward

consequence of Theorem 2.1 above.
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Corollary 2.2. Assume that (8) is satisfied, that 0 < δ < 1, and consider the inequality

∏
v∈S

N∏
i=1

|Li,v(x)|v < N−δ (max{|xi| : i = 1, . . . , N})−δ . (9)

Then, there exist proper linear subspaces T1, . . . , Tt1 of QN , with

t1 ≤
(
260N2

δ−7N
)s

, (10)

such that every solution x ∈ ZZN\{0} of inequality (9) belongs to T1 ∪ · · · ∪ Tt1.

Recall that an S-unit is a nonzero rational number x such that |x|v = 1 for all v 6∈ S. We need

the following version of a theorem of Evertse [3] on S-unit equations.

Theorem 2.3. Let a1, . . . , aN be nonzero rational numbers. Then, the equation

N∑
i=1

aiui = 1 (11)

in S-unit unknowns ui for i = 1, . . . , N has at most (235N2)N3s solutions such that
∑

i∈I aiui 6= 0

for each nonempty subset I ⊆ {1, . . . , N}.

We are now ready to proceed with the proof of our result.

3 Proof

3.1 Elementary Results

We start with the following lemmas.

Lemma 3.1. Assume that (x, b, m, r) is a solution of equation (1). Then r > m and pm < 2b.

Proof. Note that

x2 = 22b+2p2m − 2b+2pm+r + 1 < 22b+2p2m − 2b+2pm + 1 = (2b+1pm − 1)2,

therefore x < 2b+1pm − 1. Moreover, since x2 ≡ 1 (mod 2pm), it follows that x ≡ ±1 (mod 2pm).

Hence, in fact, x ≤ 2b+1pm − 2pm + 1, therefore

22b+2p2m − 2b+2pm+r + 1 ≤
(
2b+1pm − (2pm − 1)

)2

= 22b+2p2m − 2b+2pm(2pm − 1) + (2pm − 1)2,

leading to

2b+2pm(2pm − pr − 1) ≤ (2pm − 1)2 < 4p2m. (12)
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If r ≤ m, then 2pm − pr − 1 ≥ pm − 1 > pm/2, and moreover 2b+2 ≥ 8 by our assumption b ≥ 1.

Therefore,

2b+2pm(2pm − pr − 1) > 4p2m

contradicting (12). Hence, r > m. Now

(x− 1)(x + 1) = x2 − 1 = 2b+2p2m(2b − pr−m), (13)

and since gcd(x − 1, x + 1) = 2, it follows that 2p2m | x + η for some η ∈ {±1}. Hence, x −

η | 2b+1(2b − pr−m). We therefore get that 2p2m ≤ x + 1 and x− 1 ≤ 2b+1(2b − pr−m). Thus,

2p2m ≤ 2b+1(2b − pr−m) + 2 = 22b+1 − 2b+1pr−m + 2 ≤ 22b+1 − 10,

because b ≥ 1, r−m ≥ 1, and p ≥ 3. The above inequality leads to p2m < 22b − 5 < 22b, therefore

pm < 2b. ut

Lemma 3.2. Let (x, b, m, r) be a solution of equation (1). Then,

(i) m is uniquely determined by b and r −m;

(ii) r is uniquely determined by b and m.

Proof. (i) Assume that b and r − m are fixed. Let b = 2b0 + `, where ` ∈ {0, 1} and put D =

2`(2b − pr−m). Equation (1) implies that

x2 −D(2b0pm)2 = 1.

In particular, (X, Y ) = (x, 2b0pm) is a solution of the Pell equation X2 − DY 2 = 1. It is known

that all such solutions are of the form (Xk, Yk) for some positive integer k, where (X1, Y1) is the

minimal solution and for k ≥ 1, the positive integers Xk and Yk can be computed using the formula

Xk + Yk

√
D = (X1 + Y1

√
D)k.

Assume now that there exist positive integers k1 < k2, such that Yk1 = 2b0pm1 and Yk2 = 2b0pm2 .

Clearly, m1 < m2, and since Yk1 | Yk2 , it follows that k1 | k2. Since all prime factors of Yk2 are

also prime factors of Yk1 , it follows that Yk2 does not have primitive divisors in the terminology

from [2]. The results from [2] show that this is possible only for k2 ∈ {2, 3, 4, 6, 12}. Moreover,

it is known that if k2/k1 is even, then Yk2/Yk1 is also even, which is not our case because for us

Yk2/Yk1 = pm2−m1 . It is now easy to see that the only possibilities are k2 = 3k1 and k1 ∈ {1, 2, 4}.

Since Y3k1 = Yk1(4X2
k1
− 1), we get pm2−m1 = 4X2

k1
− 1 = (2Xk1 − 1)(2Xk1 + 1). The two factors

2Xk1 − 1 and 2Xk1 + 1 are coprime, therefore the above equation leads to 2Xk1 − 1 = 1. Thus,

Xk1 = 1, which is impossible because X2
k1
−DY 2

k1
= 1 and Yk1 > 1.
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(ii) Let (x, b, m, r) be a positive integer solution of equation (1). From equation (13), we conclude

that either 2b+1p2m divides one of x + 1 or x− 1, or 2b+1 divides one of them and p2m divides the

other. In the first case, we get that 2b+1p2m | x+η for some η ∈ {±1}, therefore x−η | 2(2b−pr−m).

Thus, 2b+1p2m ≤ x + 1 but x− 1 ≤ 2(2b − pr−m) < 2b+1. We then get that

2b+1 · 9 ≤ 2b+1p2m ≤ x + 1 < 2b+1 + 2,

which is impossible. Hence, we must be in the second case, so we may write

x− η = 2b+1λ, x + η = 2p2mµ, λµ = 2b − pr−m, (14)

where η ∈ {±1} and λ, µ are positive integers. From equation (14), we derive

p2mµ− 2bλ = η. (15)

We now note that λ < pm. Indeed, since x ≤ 2b+1pm − (2pm − 1) ≤ 2b+1pm − 5, we have that

2b+1λ = x− η ≤ x + 1 ≤ 2b+1pm − 4 < 2b+1pm,

therefore

λ < pm. (16)

Assume now that m and b are fixed. Let A = p2m, B = 2b. Then all positive integer solutions

(µ, λ) of equation (15) for a fixed value of η ∈ {±1} are of the form µ = µ0 + B`, λ = λ0 + A`,

where ` ≥ 0 is a nonnegative integer and (µ0, λ0) is the minimal solution of equation Aµ−Bλ = η.

Since for us λ < pm = A, it follows that our values for µ and λ are the minimal ones. Hence,

both λ and µ are uniquely determined and since 2b − pr−m = λµ, it follows that r −m is uniquely

determined, too. It remains to show that given m and b there is at most one value of η ∈ {±1}

such that if (µ0, λ0) denotes the minimal solution of equation (15), then λ0µ0 = 2b − pr−m. Well,

assume that this is not so and let (µ0, λ0) be the minimal solution of equation (15) for η = 1. Then

(2b − µ0, p
2m − λ0) is the minimal solution of equation (15) for η = −1. We then get equations

λ0µ0 = 2b − pr−m and (p2m − λ0)(2b − µ0) = 2b − pr′−m,

for some integers r and r′ both exceeding m. Substracting the first equation from the second we

get

p2m2b − p2mµ0 − 2bλ0 = pr−m − pr′−m,

which leads to the conclusion that p | 2bλ0, which is impossible. Hence, if m and b are fixed, then

η ∈ {±1} as well as λ and µ (hence, r too) are uniquely determined. ut
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3.2 An application of S-unit equations

We keep the previous notations. In particular, λ, µ and η will have the meaning of (14). Here, we

prove the following result.

Lemma 3.3. There are at most 23159 solutions (x, b, m, r) of equation (1) having a fixed value of

λ.

Proof. Writing x = 2b+1λ + η and inserting this into equation (1) we get

22b+2λ2 + 2b+2ηλ + 1 = 22b+2p2m − 2b+2pr+m + 1,

or

2bλ2 + ηλ + pr+m − 2bp2m = 0. (17)

When λ is a positive integer, the above equation (17) is a particular case of an S-unit equation as

it can be rewritten as

λ(−η2b) +
1
λ

(−ηpr+m) +
1
λ

(η2bp2m) = 1, (18)

and we can take

(a1, a2, a3) = (λ, 1/λ, 1/λ) and (x1, x2, x3) = (−η2b,−ηpr+m, η2bp2m).

It is easy to see that equation (18) is nondegenerate. Indeed, if it is degenerate, then one of the

relations 2bλ = −η, or pr+m = −ηλ, or 2bp2m = ηλ holds. However, none of those relations is

possible because b, m and r are positive and λ is coprime to 2p. Hence, by Theorem 2.3, we get

that equation (17) has at most

(235 · 32)3
4

<
(
239
)81 = 23159

solutions b, m and r. ut

3.3 The first application of the Subspace Theorem

Let ε > 0 be some small positive real number to be fixed later. Here, we prove the following result.

Proposition 3.4. There are at most

2720
(
2ε−1

)42 (19)

positive integer solutions (x, b, m, r) of equation (1) such that

(2− ε)m log p− log λ ≥ ε b log 2. (20)
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Proof. Let N = 2, x = (x1, x2). Let also Li,v be the linear forms in Q2 for i = 1, 2, and v ∈ S,

given by L1,∞(x) = x1 − x2, L2,∞(x) = x1, and Li,v(x) = xi for all (i, v) ∈ {1, 2} × {2, p}. It is

clear that L1,v and L2,v satisfy condition (8) for all v ∈ S. Let x = (2bλ, pmµ) ∈ ZZ2. Note that

|L1,∞(x)|∞|L2,∞(x)|∞ = |p2mµ− 2bλ| 2bλ = 2bλ,

and
2∏

i=1

∏
v∈{2,p}

|Li,v(x)|v = |x1|2|x1|p|x2|2|x2|p =
1

2bp2m
.

Hence,
2∏

i=1

∏
v∈S

|Li,v(x)|v ≤
λ

p2m
. (21)

Assume that inequality (20) holds. Then

log
(

p2m

λ

)
= 2m log p− log λ ≥ ε(b log 2 + m log p) = ε log(2bpm),

therefore the inequality
p2m

λ
≥ (2bpm)ε (22)

holds. Since 2bλ < 2bpm (see (16)), and

p2mµ = 2bλ + η ≤ 2bλ + 1 ≤ 2b(pm − 1) + 1 < 2bpm,

it follows that 2bpm > max{x1, x2}. Equations (21) and (22) now imply that the inequality

2∏
i=1

∏
v∈S

|Li,v(x)|v < (max{x1, x2})−ε (23)

holds. Since max{x1, x2} ≥ p > 2 = N , it follows easily that the above inequality implies

2∏
i=1

∏
v∈S

|Li,v(x)|v < 2−ε/2 (max{x1, x2})−ε/2 . (24)

Corollary 2.2 now immediately tells us that there exist at most

t1 ≤
(
260·22

(2/δ)7·2
)3

= 2720
(
2ε−1

)42
finitely many proper subspaces of Q2 such that x belongs to one of those. In particular, there

exist rational numbers r1, . . . , rt1 such that x1/x2 = rj for some j ∈ {1, . . . , t1}. This implies that

p2mµ/2bλ = rj , and since λ and µ are odd, coprime (see equation (15)), and coprime to p, it follows

that m, b, λ and µ are uniquely determined in terms of rj . Since λµ = 2b − pr−m, it follows that

r is also uniquely determined in terms of rj . ut

8



3.4 The second application of the Subspace Theorem

From now on, by Proposition 3.4, we may assume that ε ∈ (0, 1) is as small as we wish and that

(x, b, m, r) is a positive solution of equation (1) with (2 − ε)m log p − log λ < εb log 2. We assume

that ε < 1/10.

We first make some observations about these solutions. Clearly,

p2m < 2
2εb
2−ε λ

2
2−ε < 2

εb
1−ε λ

1
1−ε . (25)

Furthermore,

2bλ− 1 ≤ p2mµ < 2
εb

1−ε λ
ε

1−ε (λµ) = 2
εb

1−ε λ
ε

1−ε (2b − pr−m) < 2b · 2
εb

1−ε λ
ε

1−ε ;

hence,

λ < 2 · 2
εb

1−ε λ
ε

1−ε ,

leading to

λ < 2
1−ε
1−2ε · 2

εb
1−2ε . (26)

Inserting estimate (26) into estimate (25), we get

p2m < 2
1

1−2ε · 2εb
“

1
1−ε

+ 1
(1−ε)(1−2ε)

”
, (27)

therefore

λp2m < 2
2−ε
1−2ε · 2εb

“
1

1−ε
+ 1

1−2ε
+ 1

(1−ε)(1−2ε)

”
.

Since
2− ε

1− 2ε
< 3 and

1
1− ε

+
1

1− 2ε
+

1
(1− ε)(1− 2ε)

< 4

when ε < 1/10, we get that in this case

λp2m < 8 · 24εb. (28)

Furthermore, by inequality (27) and the fact that

1
1− 2ε

< 2 and
1

1− ε
+

1
(1− ε)(1− 2ε)

< 3

for ε < 1/10, we also get that

p2m < 4 · 23εb. (29)

We now observe the approximation

1
2bλ + η

=
1

2bλ (1 + η/(2bλ))
=

1
2bλ

+ O

(
1

(2bλ)2

)
,
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where the constant implied by the above O can be taken to be 2. Multiplying the above estimate

by 2b − pr−m, we get that ∣∣∣2b − pr−m

2bλ + η
− 1

λ
+

pr−m

2bλ

∣∣∣ ≤ 4
2b

. (30)

We put N = 3 and let Li,v for (i, v) ∈ {1, 2, 3} × S be the linear forms given by

L1,∞(x) = x1 − x2 + x3,

and Lj,v(x) = xj for all other choices (j, v) ∈ {1, 2, 3}×S\{(1,∞)}. It is easy to see that the forms

L1,v, L2,v, L3,v fulfill condition (8) for all v ∈ S. Note that we may write

2b − pr−m

2bλ + η
=

λ

p2m
. (31)

Let B = p2m2bλ. We evaluate the double product appearing in the left hand side of inequality (4)

for the vector Bx, where

x1 =
2b − pr−m

2bλ + η
, x2 =

1
λ

, x3 =
pr−m

2bλ
. (32)

It is easy to see that Bx ∈ ZZN . By estimate (30), we have

|L1,∞(Bx)|∞ ≤ 4B

2b
= 4λp2m, (33)

while ∏
v∈{2,p}

|L1,v(Bx)|v =
∏

v∈{2,p}

|Bx1|v =
∏

v∈{2,p}

|2bλ2|v =
1
2b

. (34)

For the remaining forms, we have

3∏
j=2

∏
v∈S

|Lj,v(Bx)|v =
∏
v∈S

∣∣∣B
λ

∣∣∣
v

∣∣∣pr−mB

2bλ

∣∣∣
v

=
∏
v∈S

|2bp2m|v|pr+m|v = 1. (35)

Multiplying estimates (33), (34) and (35) and using inequality (28), we get

3∏
j=1

∏
v∈S

|Lj,v(Bx)|v ≤
4λp2m

2b
<

32
(2b)1−4ε

.

Furthermore, since

max{Bx1, Bx2, Bx3} = max{2bλ, 2bp2m, pr} = 2bp2m < 4 · 2b(1+3ε),

(see (29)), it follows that the above inequality implies that

3∏
j=1

∏
v∈S

|Lj,v(Bx)|v <
32

(2b)1−4ε
< 32 · 4

1+3ε
1−4ε · (max{Bx1, Bx2, Bx3})−

1−4ε
1+3ε

< 210 (max{Bx1, Bx2, Bx3})−2δ , (36)
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where we set δ =
(1− 4ε)
2(1 + 3ε)

. In the last inequality above we used the fact that

1 + 3ε

1− 4ε
< 2.5

for ε < 1/10.

Let us suppose first that max{Bx1, Bx2, Bx3} ≤
(
3 · 210

)δ−1

. Then 2b < max{Bx1, Bx2, Bx3} <(
3 · 210

)δ−1

, therefore b < 12δ−1. Since pr−m < 2b, we get that r−m < 12δ−1, and, by Lemma 3.2,

it follows that there are at most (12δ−1)2 such solutions (x, b, m, r). When max{Bx1, Bx2, Bx3} >(
3 · 210

)δ−1

, then the above inequality (36) implies

3∏
j=1

∏
v∈S

|Lj,v(Bx)|v < 3−1 (max{Bx1, Bx2, Bx3})−δ ,

and, by Corollary 2.2, it follows that all the solutions x of the above inequality belong to at most

t1 ≤
(
260·32

δ−7·3
)3

= 21620

(
2(1 + 4ε)
1− 3ε

)63

proper subspaces of Q3. We now take ε = 1/11. Then δ = 1/4. By the above remarks and

Proposition 3.4, it follows that except for at most

2720 · 2242 + 482 < 2 · 2720 · (25)42 = 2931

solutions (x, b, m, r) of equation (1), all the other ones have the property that (x1, x2, x3) belongs

to at most

21620 · (22)63 = 21746

proper subspaces of Q3. Let c1x1 + c2x2 + c3x3 = 0 be one of such subspaces. The proof of the

Theorem 1.3 will be completed by the following lemma.

Lemma 3.5. Let T be a proper subspace of Q3. Then there exist at most 228,200 solutions (x1, x2, x3)

on T of the form

(x1, x2, x3) =
(

λ

p2m
,
1
λ

,
pr−m

2bλ

)
(37)

with some positive integer λ > 1, coprime to 2p and satisfying equation (17).

Proof. Let c1x1 + c2x2 + c3x3 = 0 be the defining equation of T . If c1 = 0, then 2bc2 + c3p
r−m = 0.

Clearly, c2c3 6= 0 and now b and r−m are uniquely determined. By Lemma 3.2, m is also uniquely

determined. So, we may assume that c1 6= 0. In particular, we may take c1 = 1. If c2 = 0, we then

get the equation λ22b = −c3p
r−m, and since λ is coprime to 2p, it follows that λ, b, and r−m are

uniquely determined. By Lemma 3.2, m is also uniquely determined. Thus, we may assume that
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c2 6= 0. If c3 = 0, we then get λ2 = −c2p
2m, which shows that λ and m are uniquely determined.

Since λ and m are fixed, Lemma 3.3 shows that equation (17) has at most 23159 solutions (b, r+m).

Hence, if c3 = 0, then there are at most 23159 solutions (λ, b,m, r). Assume now that c2c3 6= 0. By

substituting the values of x1, x2 and x3 given by (32) into the defining equation of T , we obtain

2b − pr−m

2bλ + η
+ c2

1
λ

+ c3
pr−m

2bλ
= 0,

which is equivalent to

2bλ((1 + c2)2b + (c3 − 1)pr−m) = −η(c22b + c3p
r−m).

If (1 + c2)2b + (c3 − 1)pr−m = 0, then also c22b + c3p
r−m = 0, which is impossible. Assume now

that (1 + c2)2b + (c3 − 1)pr−m 6= 0. Then,

2bλ = −η
c22b + c3p

r−m

(1 + c2)2b + (c3 − 1)pr−m
.

Inserting the above relation into (17), we get(
c22b + c3p

r−m

(1 + c2)2b + (c3 − 1)pr−m

)2

− c22b + c3p
r−m

(1 + c2)2b + (c3 − 1)pr−m

+ 2b(pr+m − 2bp2m) = 0,

which can be rewritten as

−c222b + (c2 − c3)2bpr−m + c3p
2(r−m) + (c3 − 1)22bp3r−m

− (1 + c2)224bp2m + (1 + c2)(c2 − 2c3 + 3)23bpr+m

+ (c3 − 1)(2c2 − c3 + 3)22bp2r = 0. (38)

The above equation is an S-unit equation in 7 indeterminates. If it is nondegenerate, it then has

at most

(235 · 72)7
3·3 <

(
241
)1029 = 242,189

solutions, by Theorem 2.3. For each such solution, 22b/(2bpr−m) is uniquely determined, and by

Lemma 3.2, the solution (x, b, m, r) is uniquely determined as well. It thus remains to study the

degenerate cases. Every degenerate instance induces a partition of the set with (at most) seven

elements into disjoint subsets of cardinality at least 2. Thus, there are at most 3 such disjoint

subsets, therefore the total number of such partitions does not exceed

7 · (27)3 < 23 · 221 = 224.

We now show that in each of these cases, (x, b, m, r) is uniquely determined. Let

(y1, . . . , y7) = (22b, 2bpr−m, p2(r−m), 2bp3r−m, 24bp2m, 23bpr+m, 22bp2r).
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Note that since c2c3 6= 0, it follows that y1 and y3 effectively occur. Since y1 appears, it follows

that there must be another variable which appears in the same equation with y1, and therefore b is

uniquely determined. If two of the first three unknowns, or two of the last four unknowns appear

within the same nondegenerate equation, then r −m is uniquely determined and, by Lemma 3.2,

(x, b, m, r) is uniquely determined. Thus, it suffices to study the case in which each subequation has

exactly two terms, one from the first group of 3 and one from the last group of 4. If y1 and yi for

i = 4, 5, 6, 7 appear in the same equation, then 3r−m, 2m, r + m, or 2r are uniquely determined,

respectively. If y3 and yi for i = 4, 5, 6, 7 appear in the same equation, then r+m, 4m−2r, 3m−r,

or 2m are uniquely determined, respectively. It is now easy to see that any pair consisting of an

exponent from the first group and one from the second group being determined implies that both

m and r are determined, with the exceptions when one of the subequations contains y1 and y5

and the other y3 and y7, or one of the equations contains y1 and y6 and the other contains y3 and

y4. Assume that we are in the first instance. Then m is determined. Since the coefficient of y7 is

(c3−1)(2c2− c3 +1) is nonzero, it follows that c3 6= 1. Hence, y4 appears. If it appears in the same

subequation with y1 (hence, also y5) or with y3 (hence, also y7), we get immediately that r is also

determined. If not, it must appear in a different equation involving at least one of y2 or y6, and it

is easy to see that r is also determined. Assume that we are in the second instance. Then r + m is

determined. Since the coefficient of y6 is (1 + c2)(c2 − 2c3 + 3) is nonzero, we get that 1 + c2 6= 0.

Hence, y5 also appears with nonzero coefficient. If y5 appears in the same equation as y1 (hence, as

y6 also), we get that m is determined, therefore both r and m are determined, while if y5 appears

in the same equation as y3 (hence, as y4), then 2r − 4m is determined, therefore again both r and

m are determined. Finally, if y5 does not appear in any of the above two equations, then it must

appear in an equation involving either y2 or y7. Hence, either r − 3m or 2m− 2r are determined,

therefore both r and m are determined. This completes the proof of the claim that every solution

of equation (38) determines (x, b, m, r) uniquely. Since the function (235(N2))N3s is subadditive in

N for fixed s, it follows that the totality of solutions does not exceed

224 · 242,189 < 242,213

which completes the proof of Lemma 3.5. ut

To summarize, except for 2931 solutions (x, b, m, r) of equation (1), each solution has the prop-

erty that the vector x shown at (37) lies on one of at most 21746 proper subspaces of Q3, and each

one of such subspaces contains no more than 242,213 such points x by Lemma 3.5. Thus, the total

number of solutions (x, b, m, r) of equation (1) does not exceed

2931 + 21746 · 242,213 < 250,000,
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which completes the proof of Theorem 1.3.

4 Comments

The bound we found for the number of solutions does not depend on the fixed prime p. It is perhaps

true that a refined version of our argument can be used to prove the following more general result.

Let S be a fixed finite set of prime numbers of cardinality s. Then, the diophantine equation

x2 = u2b+2v2m − ub+2vm+r + 1

in positive integers x, u, v, b, m, r with coprime S-units u > 1 and v > 1 has only finitely many

solutions. Moreover, the number of such solutions does not exceed a computable number depending

only on s. We have not verified the details of such a result.
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